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The behavior of a charged particle in a strong-laser plasma is discussed by solving 
the generally covariant equation of motion for a charged particle. The classical 
description for the radiation of a charged particle in a strong-laser plasma is 
given, and the intensity and the radiation power are derived in detail. 

1. I N T R O D U C T I O N  

In Zhu et  al. (1995) a laser plasma is described by Riemannian geometry.  
The correctness of  this description has not been proved. Because an electron 
or other charged particle is a microparticle, it can be taken as a probe to test 
the geometry.  We know that a charged particle in a vacuum can neither emit 
nor absorb radiation, because the laws of  energy and momentum conservat ion 
cannot be satisfied at the same time. Only when a charged particle accelerates 
under the action of  an external field can radiation be emitted. Such a field 
could be a Coulomb field in an atom (in which case the emission is the 
bremsstrahlung) or a bending magnetic field in a high-energy accelerator (the 
synchrotron radiation) or a plane-wave electromagnetic field (Sarachik and 
Schappert,  1970). Therefore, one of  the methods to test this geometry is to 
measure the radiation o f  a charged particle in a strong-laser plasma. In this 
paper, we give a classical description for the radiation of  a charged particle. 
Quantum considerations will be given elsewhere. 
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2. MOTION OF A CHARGED PARTICLE IN A 
STRONG-LASER PLASMA 

2.1. Equation of Motion 

In Zhu et al. (1995) we gave a Riemannian geometrical description of  
a strong-laser plasma. For a one-dimensional isothermally expanding plasma 
along the x direction, the motion of a charged particle in a strong-laser plasma 
obeys the generally covariant equation (Weinberg, 1972) 

DU ~ e 
D'r - m c  2 -g~F~pUP (1) 

where U ~ = dx~/d'r is the four-dimensional velocity of the electron, -r is the 
proper time, DU~/D'r  is the covariant derivative of U ~ with respect to -r, ~ "  
is the optical metric of the strong-laser plasma, F ~  is the electromagnetic 
field tensor, e and m are the charge and mass of a charged particle, and c is 
the velocity of light. From Zhu et  aL (1995) we have 

goo = - 1/(1 - N) (2) 

go1 = csNslc(1 - N )  (3) 

gtl = g22 = g33 = 1 (4) 

N = n/nc (5) 

Ns = ns/nc (6) 

nc = mto2/4"ne 2 (7) 

oa2 _ mtove A(~)  cos cot (8) 
Ey = /720 - OX 0 e 

Bz = Fl2 -- OA~ _ ckmve dA(~) sin cot (9) 
Ox 1 e d~ 

A 2 is the third component of the four-dimensional electromagnetic vector 

A2 - CmVe A(~)  sin cot (10) 
e 

The other components of the four-dimensional electromagnetic vector are 
zero, i.e., 

Ao =A1 =A3  = 0 ( l l )  

Thus equation (1) can be written in the form 
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D U  O _ e (gOOFo2U 2 + gOtFt2U2) (12) 
D'r mc  ~ 

D U  l _ e (glOFo2U 2 + gllFI2U2) 
D"r mc z 

(13) 

DU~ _ e (gaZF2oU o + g22F2,U,)  (14) 
D'r mc'- 

D U  3 
- 0 (15) 

Dr 

2.2. So lut ion  of  the Equat ion  

Since (Zhu et al., 1995) 

F ~  = O, (16) 

equation (15) is reduced to 

d U  3 
- 0 (17) 

d-r 

For the initial condition U 3 In=0 = 0, the solution of equation (16) is 

U 3 : 0 (18) 

Since F ~  = 0 (Zhu et al., 1995), equation (14) is reduced to 

d U  2 _ e -~22( 3A2 dx ~ OA: dxl'~ 

d'r mc  2 \ 3x ~ d'r 3x I d'r J 

- -  e ~22 da2 (19) 
mc 2 d'r 

For the initial condition UZtA=0 = 0 and g22 = I the solution of equation 
(19) is 

U2 = eA2 _ veA(~) sin cot (20) 
m c  2 e 

From the line element d-r 2 = ~ d x ~ . d x  ~, we obtain 

~r  ~ = - 1  (21) 

The nonzero components o f ~  are g00, gob gl I, gz2, and g33, and the equation 
(21) can be written as 

~oo(U~ 2 + 2~otU~ I + ~tl(Ul) 2 + g22(U2) 2 = --1 (22) 
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By taking the covariant differentiation of equation (22) with respect to 
"r, we obtain 

~ooU o D u O  + ~o1U 1 D u O  
D'r D'r 

D U 2  0 
+ R22U2 D'r = 

D U  1 D U  1 
�9 "[- gOl UO + gll U1 - -  

D'r D'r 

Substituting equations (12) and (13) into equation (23) yields 

[~oo~~176 + ~oog~ + ~ol~~ + ~ol~LIF12]U ~ 

+ [~o1~~176 + ~o1~~ + ~ ~  + ~l l -~ t lF l2]U ~ 

m c  2 - d U  2 
+ - -  g2z ~ = 0 

e 

It is easy to see that 

dx t dx  1 dx  ~ vx 
U I _ - _ _  - U 0 

d'r dx  ~ d'r c 

d U  2 d U  2 dx  0 d U  2 
. . . . .  U o 

d'r dx ~ d'r dx  ~ 

(23) 

(24) 

(25) 

(26) 

and from equation (20), we have 

d U  2 (Dve 
dx  0 - -  C2 A(~)  cos tot (27) 

By substitution of equations (25)-(27) into equation (24), we obtain the 
component of the three-dimensional velocity 

Vx = - c [ (goog  ~176 + golg ~ - I)A(~) cos tot 

ck  dA(~)  ] 
+(~o0~ ~  tt) ~ ~-~ sin tot 

X [(~01~ 00 + ~ll~~ cos tot 

]-' 
+ (~01~o I + ~11~11 ) c k  dAft;) sin tot (28) 

m d~ 

Inserting equations (20) and (25) into equation (22), we get the first component 
of the four-dimensional velocity 
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U 0 (-{1+ } 
X [goo + 2~o, v~ + (v~'~ 2] 

7 ~"tc) / 
- 1)1/2 

(29) 

From equation (21), we obtain the second component of the four- 
dimensional velocity 

fvA~l_,,{~ X goo + 2gol vx v~ - -  -~- g l l  - -  (30)  < tT / ]  / c 

where vx is given by equation (28). The other two components of the four- 
dimensional velocity are given by equations (20) and (18), and the y and z 
components of the three-dimensional velocity are 

Vy = c U 2 / U  0 

= veA(~) sin o~t - goo + 2~ol v~ + 

X{l+[-~A(OsintotJj~ } (31) 

V z = c U 3 / U  0 = 0 (32) 

From equations (28) and (31) we see that the velocity components vx 
and Vy are the functions of time, i.e., a charged particle is accelerated in 
a strong-laser plasma. So a charged particle in a strong-laser plasma can 
emit radiation. 

3. RADIATION 

3.1.  R a d i a t i o n  F ie ld  

The radiation intensity emitted by an accelerated charged particle has 
the form (Jackson, 1976) 



2100 Shen, Zhu, and Guo 

with 

} = -  rl X [(rl - 13) x [3] (33) 
c 

r = [(x - Xo) 2 -[- (y  - yo) 2 + (z - Zo)2] 1/2 ( 3 5 )  

k = 1 - r1"13 (36) 

13 = v/c (37) 

where (Xo, Y0, Zo) are the space coordinates of  the charged particle, r~ is the 
unit vector in the direction of  r, v is the velocity of  the charged particle, and 
[~ is the derivative of  13 with respect to time. 

We now consider the radiation emitted by a free electron in a strong- 
laser plasma and rewrite its velocity components  as 

vx = - c ( a  cos tot + b sin to t ) / ( fcos  tot + g sin tot) (38) 

v y = c d s i n t o t  - g o o + 2 ~ o l v ~ +  

I I2 

[1 + (h sin tot)2]-l~ (39) X 
J 

where 

a = (~oo~  ~176 + ~o1~ ~ - 1)A(~o) (40 )  

b = (~o0~ ~ + ~o1~ ll) ck dA(~) (41) 

f =  (~ol~ ~176 + ~ll~t~ (42) 

g = (~oL_~o 1 + _~l~ll  ) ckdA(~)  (43) 

d = v~ A(~o) (44) 
c 

~o = ~ o  (45) 

Since Ve/C is of  order 10 -4, i.e., d - -  1 0  - 4  and 1 + (d sin cot) 2 --~ 1, equation 
(35) can be reduced to 
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I / \2-1 112 
Vy = Cd s in  tot -goo-2golVX--gll/~)jC (46) 

The velocity of a free election moving in a strong-laser plasma can be 
written as 

V = Vxi + V y j  (47) 

[(i, j, k) are the unit vectors in the directions of axes (x, y, z)] and then [3 
and [3 can be expressed as 

= _ Vy 
13 vx i + - - j  (48) 

c c 

[~ = 9~i + 9~j (49) 
c c 

~ and 0>, are the derivatives of the velocity components in the x and y 
directions with respect to time. From equations (38) and (46), we obtain 

9x = c t o ( a g  - b J ) / ( f  c o s  to t  + g sin cot) 2 (50) 

[ - -  1)y = C do) cos tot -goo - 2~ol vx gll 

1 c d  sin tot -2gol -- - 2glI 
+ 2  c c c/ 

• [ - g o o -  2gol vx_  gl c 1/%] _l (51) 
L 

Similarly, the unit vector rl can be written as 

ri = x l i  + ylj  + ztk  (52) 

where 

x l  = ( x  - x o ) / r  (53) 

Yl  = ( Y  - Y o ) / r  (54) 

z j  = ( z  - Zo ) / r  (55) 

Inserting equations (48), (49), and (52) into equations (33) and (34) 
gives the radiation intensity emitted by a free electron in a strong-laser plasma 
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where 

E e 1 ({ [ (  ~)gy  ( ~ ) ~ ]  'Ox) 
= c ~ r  Yl Xl - c -  Yl - - Zl2c i 

+ { - x , [ ( x l - ~ ) ~ - ( Y , - ~ ) ~ ] - z t 2 ~ } J  

-- + ylzi k -F- XlZ 1 C 

e 1 
B -  

c k3r 
-- - - - -  { Z I [ ~  v XI(VxVYc2 VyVx)]i 

"~- [ y" I (:x --C x l Q y -Jr- 

(56) 

(yl2+Xl2)(VxVy-PxVy)]k}c2 (57) 

( _ V x + y , ~ )  (58) k = l -  Xlc 

3.2. Radiation Power 

The radiation emitted by an accelerated free electron can be regarded 
as the coherent superposition of the contributions of two acceleration compo- 
nents respectively parallel and perpendicular to the velocity. Now we decom- 
pose the acceleration of a free electron in a strong-laser plasma into two 
components parallel and perpendicular to the velocity, respectively. 

The cosine of the angle ~b between the velocity and the acceleration is 

VxV x -4- VyVy 
COS ~b : (Vx2 -~ l)y2)l/2(Qx 2 -~- 1)y2)l/2 (59) 

Therefore, the two acceleration components in the directions parallel and 
perpendicular to the velocity are 

'~, = 1'1 cos + (60) 

~z = I~l sin + (61) 

where 
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]#1 = (9~ 2 + 9y2) v2 (62) 

s i n + =  (vx2 + Vy,, tv.~ + y ,  �9 2"~1/2/.. 2 1) 2~/2 (63) 

The two components of the acceleration [equations (60) and (61)] can be 
written as 

911 = (Vxgx + Vy9y)/(Vx 2 + Vy2) v2 (64) 

9 •  = IVxV), --  l@(2.rl/(Vx 2 -}- Vy2) I/2 (65) 

The radiation power emitted by the parallel and the perpendicular accel- 
eration components is 

2 e 2 
PII = ~ 75 9H2Y 6 (66) 

2 e 2 
P• = ~ 75 923, 4 (67) 

where 

y = 1/(1 - B2) I/2 (68) 

B = 1131, and 13 is given by equation (48). 
Inserting equations (60) and (61) into equations (62) and (63) yields 

2 e 2 ,y6 (~vl)x q'- 12yVy) 2 
Pli = ~ 75 vx 2 + VY z (69) 

2 e 2 ,~4 (Vxgv --  Vv 9r)2 
P• = 3 7 Vx- ~ ~ VY 2 (70) 

From equations (69) and (70), we get 

Pll _ y2(VxOx + vygyl2 (71) 
\ V x 9 y  --  FyVx/I 

In practice, d is of order 10 -4, Vy - -  10-4Vx, 9y ~ 10-4Vx, and 9x - Vx [from 
equations (38), (46), (50), and (51)]. Therefore, vxgx + Vsgy ~ vx;, Vx9y - 
Vyf~ x ~ 10-4Vx 2, (Vx9 x q- Vygy)](Vxgy --  Vy9x) ~ 10 4, and Pll/P • ~ 1082/2. For a 
relativistic particle, Y > >  1 and then PII > >  P• Namely, for a free electron 
in a strong-laser plasma, the radiation power of the parallel acceleration 
component is much greater than that of the perpendicular component. So the 
perpendicular acceleration component can be neglected, and the total radiation 
power is considered to be emitted by the parallel component. The radiation 
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is of bremsstrahlung type, and its angular distribution is limited to the small 
cone along the direction of motion. 

4. C ONC LUS ION 

We have obtained the four- and three-dimensional velocities of a free 
electron in a strong-laser plasma by solving the generally covariant equation 
of motion for an electron. The radiation emitted by a free electron in a strong- 
laser plasma was studied, and the radiation intensity and the radiation power 
were derived. The radiation emitted by the acceleration component perpendic- 
ular to the velocity of a free electron in a strong-laser plasma can be neglected 
as compared to that of the parallel component. Then the total radiation power 
can be approximately considered to be emitted by the parallel component, 
and the radiation emitted by a free electron in a strong-laser plasma is a sort 
of bremsstrahlung. 

Obviously, if g~l~ = "q~, then the obtained results become the case of 
flat space-time. Therefore the difference between the cases with and without 
the medium can be used as a test of the Riemann geometry given in Zhu et 

al. (1995). 
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